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Application of Different Artificial Neural Networks
Retention Models for Multi-Criteria Decision-Making
Optimization in Gradient lon Chromatography

?omislav Bolanca, Stefica Cerjan-Stefanovi¢, Melita Lusa,

Sime UKkic, and Marko Rogosi¢

University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia

In this work, the principles of multi-criteria decision-making
were used to develop an efficient optimization strategy in gradient
elution ion chromatographic analysis. Two different artificial neural
network retention models (multi-layer perceptron and radial basis
function), three different separation criterion functions (chromato-
graphy response function, separation factor product and normalized
retention difference product), and four different robustness criterion
functions (CR1-CR4) were examined. The shape of the calculated
separation vs the robustness response surface was used as principal
criterion. Analysis time and minimum separation of adjacent peaks
were additional criteria. The results showed that the radial basis
artificial neural network retention model in combination with nor-
malized retention difference product separation criterion function
and CR3 robustness criterion function provided the optimal gradient
ion chromatographic analysis.

Keywords artificial neural networks; ion chromatography;
multi-criteria decision-making

INTRODUCTION

In general, method development in ion chromatography
can be divided into at least four stages. The first one com-
prises the selection of an appropriate parameter space — the
parameters that have a significant effect on the separation
quality are identified and their boundary values set.

The second stage includes the retention modeling, which
can be performed by more than several approaches. A
theoretical model is derived from fundamental equations
and invariably requires knowledge of a range of parameters
relating to the analyte, stationary phase, and eluent, before
calculation of the retention time of the analyte is possible
(1-5). On the other hand, empirical models concentrate
on predicting the manner in which retention changes, when
some ion chromatographic parameter is varied between
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two or more known values, rather than the underlying
theoretical explanation for these changes (6-8). The
artificial neural network empirical retention models prove
to be accurate and a fast alternative to the most of the
theoretical and empirical retention models (8-10).

The third stage concerns the application of a separation
criterion function used to measure the resolution between
each chromatographic peak; several criterion functions
have been addressed over the years (11-17). The separation
criterion function should:

1. quantify properly the separation degree by weighting
the individual peak contributions,

2. be sensitive enough to judge apparently similar peak
arrangements, and

3. unambiguously indicate to the analyst the optimal
conditions offering the best separation.

The fourth stage concerns the method validation process.
It involves different tests to assess the quality of the analy-
tical method including the robustness test. By considering
robustness at the fourth stage of the method development
process both the amount of work required and the chance
of failure during the method validation stage can be greatly
reduced. Robustness in computer-assisted chromatographic
optimization can be assessed from the shape of the response
surface for a particular separation criterion function
(18,19). However, this shape reflects not only the properties
of the separation criterion selected, but all the uncertainties
of the experimental data, retention model selection and
modeling procedure as well; the results of the robustness
tests have therefore to be taken with caution. Furthermore,
it is not adequate to use only robustness as a single factor in
evaluation of the method. Achieved separation (third stage)
along with some other factors, like analysis time, has to be
considered as well. Therefore multi-criteria decision-mak-
ing methodology seems to be a reasonable choice in global
method development in ion chromatography.

This work focuses on the application of multi-
criteria decision-making methodology in gradient ion
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chromatography. Two different artificial neural network
retention models based on different methodologies are
developed: multi-layer perceptron artificial neural network
retention model (MLP) and radial-basis function artificial
neural network retention model (RBF). Three different
separation criterion functions were applied in combination
with four different robustness criterion functions for the
determination of optimal conditions. Applied separation
and robustness criteria are different in terms of mathemati-
cal formulation and chromatographic interpretation. The
obtained optimal combination of optimization procedure
(retention model, separation, and robustness criterion func-
tion) resulted in general recommendations for method
development optimization in gradient ion chromatography.

OPTIMIZATION STRATEGIES

The second stage of optimization procedure involves
retention modeling by using MLP and RBF artificial
neural networks. The massively interconnected structure
of the MLP artificial neural network provides a great
number of weights and as such a great capacity for storing
complex information. The advantage of MLP networks
methodology is its capability of generalization in regression
of the input space where little or no training data are
available. The standard learning algorithms, such as the
well-known back-propagation (BP) learning scheme, are
iterative learning methods. In their simplest form they
often suffer from slow convergence and problems with
local maxima in the error surface. Measures taken to
address these issues, such as the application of Levenberg-
Marquardt algorithm, often lead to an increase in the
computational complexity of the training algorithm (19).

In contrast to the MLP structure, the RBF networks use
radial activation functions to describe the nonlinear
problems (21). RBF networks are characterized by rapid
training, usually orders of magnitude faster than MLP,
while exhibiting none of its training pathologies such as
paralysis or local minima problems. On the other hand,
RBFs performance characteristics are lower when little or
no training data are available. The RBF system consists
of three layers (input, hidden, output). The activation of
a hidden neuron is performed in two steps. The first one
is computing the distance (usually by using the Euclidean
norm) between the input vector and a particular center that
represents the particular hidden neuron. The second one is
the application of a bell-shaped function that links input
and hidden layer, using the obtained distance to get the
final activation of the hidden neuron. The activation of a
neuron in the output layer is determined by a linear
combination of the fixed nonlinear basis functions.

In the third stage of the optimization procedure, appli-
cation of two elementary criteria, the separation quality
and the analysis time, are usually of prime interest. The
first one is related to the analysis performance, the second

deals with the analysis cost. The separation criterion
function has different mathematical formulations for the
description of required maximal resolution within the
reasonable analysis time. The analysis time may be related
to the retention time of the last eluted solute. In addition to
these two elementary criteria, estimation of the method
robustness can be incorporated. The result of global opti-
mization process depends on the criterion function used
for the determination of optimal conditions (22). Applica-
tion of different retention models incorporated with differ-
ent criterion functions often yields a set of multiple optimal
conditions. Multi-criteria decision-making can help to
select the global optimal conditions, but for finding the
global optimum, the application of different retention mod-
els incorporated with different criteria might be crucial.

EXPERIMENTAL
Reagents and Solutions

Standard solutions of fluoride (1.0000g/L), chloride
(1.0000 g/L), nitrite (1.0000g/L), sulfate (1.0000g/L),
bromide (1.0000 g/L), nitrate (1.0000 g/L), and phosphate
(1.0000 g/L) were prepared from the air-dried (at 105°C)
salts of individual anions of p.a. grade (Merck, Darmstadt,
Germany). Appropriate amounts of individual salts were
weighed into a volumetric flask (100mL) and dissolved
with Milli-Q water. Mixed stock standard solution of
fluoride (20.00mg/L), chloride (50.00mg/L), nitrite
(100.00 mg/L), sulfate (100.00 mg/L), bromide (200.00 mg/L),
nitrate (200.00 mg/L), and phosphate (300.00 mg/L) were
prepared by measuring the appropriate volume of standard
solutions into a 100 mL volumetric flask, which was later
filled to the mark with Milli-Q water. Working standard
solutions of fluoride (2.00 mg/L), chloride (5.00 mg/L), nitrite
(10.00mg/L), sulfate (10.00mg/L), bromide (20.00mg/L),
nitrate (20.00 mg/L), and phosphate (30.00 mg/L) were pre-
pared by measuring the appropriate volume of mixed stock
standard solution into a 100 mL volumetric flask, which
was subsequently filled to the mark with Milli-Q water.
Working eluent solutions were prepared on-line by appro-
priate dilution of KOH with Milli-Q water. In all cases,
18MQcem ™! water (Millipore, Bedford, MA, USA) was
used for dilution.

Instrumentation

A Dionex DX600 chromatography system (Sunnyvale,
CA, USA), equipped with quaternary gradient pump
(GS50), eluent generator module (EG40), degas unit on
eluent generator, trap column (CR-TC), chromatography
module (LC30), and detector module (ED50A) was used in
all experiments. A Dionex IonPac AS15 (4 x 50 mm) guard
column, an IonPac AS15 (4 x 250 mm) separation column
and an AAES 4mm electrolytic suppressor (working in
recycle mode) were used, respectively. The sample-loop
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volume was 25 uL, eluent flow rate was 1.2 mL/min, initial
concentration of KOH in the eluent was 6 mmol/L and max-
imal concentration of KOH in the eluent was 80 mmol/L.
The starting time of gradient elution was varied from 0 to
20 min and slope of gradient elution linear curve was varied
from 53 to 89 degrees (1.33 to 57.28 mmol/(L min), respec-
tively). Eighty-one experimental data points were obtained
covering various separation conditions. The dead volume
between the eluent generator and the injector was determined
by noting when the gradient slope is observed in the detector
(started at time =0) and subtracting the void volume from
this time. Determined void retention time between the eluent
generator and the injector was 0.34 min. The whole system
was computer-controlled through Chromeleon 6.40 4 SP1
Build 7.11 software.

Artificial Neural Network Retention Model

The MLP and RBF neural networks used are the
three-layered feed-forward neural networks. The input
layer consists of the two neurons representing starting time
of gradient elution and slope of gradient elution linear
curve. The output layer consists of one neuron, represent-
ing the retention time of the particular anion (fluoride,
chloride, nitrite, sulfate, bromide, nitrate, and phosphate).
Experimental design consisting of 81 experimental data
points was used for the calculations. Random function
was applied for the selection of experimental data points
used for training, external testing, and external validating
the data. Thus an equal influence on the neural network
was assigned to each experimental data point. The testing
set was used for checking for the overtraining. Validation
set was used to check for the generalization ability of
networks.

The training algorithm, number of hidden layer
neurons, and experimental data points used for the training
set were optimized in terms of obtaining precise and accu-
rate retention models. Thus experimental effort and calcu-
lation time were successfully minimized. The optimal MLP
retention model consisted of a two phase training proce-
dure. The first phase included 100 iteration steps using
gradient descent algorithm; this was followed by the second
phase — Levenberg Marquardt algorithm was applied until
the global minimum of error surface was found. The opti-
mal RBF retention model was trained using K-means
radial assignment algorithm in combination with K-nearest
neighbor radial spread algorithm and linear optimization
algorithm. The number of hidden layer neurons and
number of experimental data needed for calculation were
successively increased until the maximal predictive ability
was found. The optimal number of experimental data point
in training set was 21 for most of the networks used, leav-
ing the average of 20 experimental point for testing and 40
for validation of the model.

The calculations were performed in Statistica 7.0 envir-
onment (StatSoft Inc. USA); the detailed description of the
development of ANN retention models is given elsewhere
(23,24).

Separation Criterion Function

Three different separation criterion functions were
applied for calculation of optimal separation conditions,
namely :

e Chromatography response function, CRF

Ti

" (Ar
CRF = Hln (L) + (trmax - Atti) (1)
i=1

e Separation factor product, SF

n

H Al”i

Tmax

"'min

o Normalized retention difference product, NRD

n—1

At,,

NRD = H =R

B Z} Aty
i=

3)

where ¢, is the retention time of ith chromatographic peak,
At, is the difference between adjacent pair of peaks, 7, 1S
the retention time of first eluting ion, and ¢,,,., is the
retention time of last eluting ion. The calculations were
performed in MATLAB 7.0.0. (MatWorks, Sherborn,
USA) environment.

Robustness Criterion Function

Four different robustness criterion functions (25)
were applied for the calculation of optimal robustness
conditions:

CRl=n 7}/{")’1 (4)
1A
i=1
Ax
> At
1 1 =z
CRZ=5(f)y + 5| 1= % (5)
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The criteria differ in the way the two characteristic
values, i.e., scaled response for a certain point j, (fi)s,
and the gradient of the scaled response, A(fi),/Ax, are

combined. The calculations were performed in MATLAB
7.0.0. (MatWorks, Sherborn, USA) environment.

RESULTS AND DISCUSSION

Table 1 presents the performance characteristics of opti-
mized artificial neural networks retention models. One can
observe that both retention models (MLP and RBF ANN)
generalize data well (R? higher then 0.9928) and therefore
can be used for optimization purposes in ion chromatogra-
phy. However, the RBF artificial neural network retention
model possesses small but noticeable systematic error. The
observed error has both proportional and absolute com-
ponents, which can be seen from Table 1 (intercept

TABLE 1
Performance characteristics of optimized MLP and RBF retention models
MLP RBF
Anions Intercept Slope R? Intercept Slope R?
Fluoride
Value —0.0364 1.0038 0.9981 0.2597 0.9676 0.9928
Upper 95% —0.1440 0.9901 —0.0400 0.9415
Lower 95% 0.0712 1.0176 0.4676 1.0937
Chloride
Value 0.0189 0.9990 0.9998 0.0685 0.9940 0.9995
Upper 95% —0.0725 0.9941 —0.0682 0.9866
Lower 95% 0.1104 1.0040 0.2053 1.0014
Nitrite
Value 0.0383 0.9987 0.9996 0.6004 0.9223 0.9925
Upper 95% —0.0999 0.9922 —0.2630 0.8968
Lower 95% 0.1766 1.0053 0.7379 1.0478
Sulfate
Value 0.1669 0.9944 0.9990 —0.2182 1.0249 0.9977
Upper 95% —0.1092 0.9843 —0.5472 0.9991
Lower 95% 0.4429 1.0046 0.0892 1.0406
Bromide
Value 0.2144 0.9937 0.9989 0.2328 0.9898 0.9977
Upper 95% —0.0802 0.9834 —0.2017 0.9748
Lower 95% 0.5090 1.0048 0.6673 1.0049
Nitrate
Value 0.2999 0.9913 0.9985 0.1438 0.9934 0.9974
Upper 95% —0.0695 0.9792 —0.3428 0.9775
Lower 95% 0.6693 1.0034 0.6304 1.0094
Phosphate
Value —0.0462 0.9996 0.9985 —0.3043 1.0036 0.9970
Upper 95% —0.4598 0.9873 —0.8900 0.9826
Lower 95% 0.3675 1.0119 0.2815 1.0210
All Anions
Value 0.0445 0.9984 0.9995 0.2441 0.9676 0.9928
Upper 95% —0.0219 0.9958 0.0400 0.9415
Lower 95% 0.1109 1.0010 0.4483 0.9937
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significantly different from zero, slope significantly differ-
ent from one). In our attempts to avoid the systematic
errors, we tested the less complex RBF models (with smal-
ler number of hidden layer neurons) and succeeded in the
elimination of systematic error, but on account of the pre-
dictive ability. The observed decrease in predictive ability
was too high and therefore the slightly overfitted RBF
model (with more hidden layer neurons and a systematic
error) has been accepted as the optimal one. This is justified
by noting that the systematic error is known and under
control, since no extrapolation is possible due to the limita-
tions of the applied IC instrument (the whole concentration
range is covered by the experiment). The optimal MLP reten-
tion model does not possess any systematic error and its pre-
diction ability is slightly higher than that of the RBF model,
which suggests that it can be used successfully in global opti-
mization of ion chromatographic methodology. Neverthe-
less, the MLP model training requires substantially more
effort due to a possibility of dropping into the local minimum
on the error hyperplane. Furthermore, the MLP model
requires more computational time. Finally, it can be stated
that both models showed characteristic advantages and
drawbacks, but generally showed good potential for their
use in global optimization process in ion chromatography.
Figures 1-3 present response surfaces obtained by using
MLP and RBF retention models in combination with
CRF, SF, and NRD separation criterion functions. It can
be clearly seen that the calculated response surface
obtained by using NRD separation criterion function is
far more complex then by using SF and particularly CRF
separation criterion function in cases of using either MLP
or RBF retention model. The complexity of the response
surface obtained by using NRD separation criterion

function is a result of its high sensitivity on the separation
conditions. This can be of great assistance to the chroma-
tographer offering additional potential solutions of separa-
tion problem. Nevertheless, the searching for the global
maximum (separation) has to be done very carefully in
order to avoid local maxima. Furthermore, expert knowl-
edge might be required in order to make the final decision
on the optimal separation conditions. All discussed reasons
can favor the using of SF or CRF separation criterion
functions that provide far less complex response surfaces;
an easy and fast solution of the separation problem is
offered with decreased possibility of misidentifying the
optimal separation conditions. The total analysis time is
an unavoidable factor which has to be taken into account
when final decisions on the optimal separation conditions
are to be made. Table 2, it summarizes the optimal condi-
tions for the separation, including estimated retention
times of the particular anions. From Table 2 it can be seen
that CRF and SF separation criterion functions provide
nearly the same results for optimal conditions with total
analysis time of approximately 54 minutes. On the con-
trary, the application of NRD separation criterion function
suggests two completely different gradient profiles as opti-
mal ones, depending on the retention model used for the
optimization process. Furthermore, the optimal analysis
times are significantly shortened (with respect to CRF or
SF cases) to the values of 17 and 25 minutes for MLP
and RBF network, respectively. In spite of shorter total
analysis time, the separation of adjacent peaks is improved
(the values for the two least separated components are
added in Table 2).

Due to the complexity of the optimization problem, it
would be favorable to include an additional criterion for

TABLE 2
Calculated optimal conditions for gradient ion chromatography analysis
ANN MLP RBF
Separation criteria
function CRF SF NRD CRF SF NRD
Slope 53 54 87 53 53 65
Starting gradient time 20 20 3.6 20 18.8 0
Retention time/min
Fluoride 8.27 8.27 6.85 8.56 8.47 5.59
Chloride 25.69 25.64 10.09 25.46 24.93 11.35
Nitrite 30.06 30.03 11.53 30.04 29.27 13.46
Sulfate 43.68 43.28 12.75 43.61 42.36 18.44
Bromide 41.55 41.28 15.83 41.73 40.88 21.18
Nitrate 44.57 44.32 17.06 44.41 43.2 23.05
Phosphate 54.73 53.92 14.46 54.11 53.26 25.82
AtR minimum /min Sulfate/ Sulfate/ Sulfate/ Sulfate/ Sulfate/ Bromide/

nitrate 0.89 nitrate 1.04

nitrate 1.22 nitrate 0.80 nitrate 1.26 nitrate 1.97
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the selection of optimal separation conditions; the reason-
able choice is the application of robustness criterion
functions.

Figures 1-3 show, beside the separation quality, the
results of the robustness calculations, using four different
criterion functions: CR1, CR2, CR3, and CR4. It is shown
that CR1 and CR4 calculate the same optimal robustness
conditions, regardless of the applied retention model. How-
ever, the calculated optimal conditions obtained by these
two criterion functions are situated far away from the

CR2CRF
/ (0.8,87)
85
80
75
70
65
60

CRF y10°

o
o
i=J
o
3
o
s
7]

55

0 2 4 6 8 10 12 14 16 18 20
Starting gradient time/min
(a)
CRA4CRF
85 \ (0
CR2CRF
(1.2,87)

80
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3
o
o
3
S 70
[}
(7]

65

60

55

Starting gradient time/min

(b)

FIG. 1. CRF separation criteria function vs starting time of gradient elu-
tion and slope of the gradient elution linear curve; optimal separation
(Max CRF) and optimal robustness for CR1, CR2, CR3, CR4 are
marked. (a) MLP neural network retention model; (b) RBF neural
network retention model.

350

85

300

Slope/degree

0 2 4 6 8 10 12 14 16 18 20
Starting gradient time/min
(a)
CR1SF
CR4SF
85 (1.6,85)

Slope/degree

Starting gradient time/min

(b)

FIG. 2. SF separation criteria function vs starting time of gradient elu-
tion and slope of the gradient elution linear curve; optimal separation
(Max SF) and optimal robustness for CR1, CR2, CR3, CR4 are marked.
(a) MLP neural network retention model; (b) RBF neural network
retention model.

calculated separation optimum (except for the RBF -
NRD combination). In fact, they are avoiding sharp max-
ima in the calculated response surface, which is, indeed, the
purpose of the robustness calculations. The results
obtained by CR2 criterion function differ from those
obtained by CR1 and CR4; however, they miss the optimal
separation conditions as well. The only robustness criterion
function that gives results comparable to the optimal
separation results is CR3, in all cases except for the MLP
retention model in combination with the NRD separation
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NRD
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0 2 4 6 0
Starting gradient time/min
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Starting gradient time/min
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FIG. 3. NRD separation criteria function vs starting time of gradient
elution and slope of the gradient elution linear curve; optimal separation
(Max NRD) and optimal robustness for CR1, CR2, CR3, CR4 are
marked. (a) MLP neural network retention model; (b) RBF neural
network retention model.

criterion function. In other words, CR3 criterion accepts
sharp maxima, but avoids the very peak by suggesting opti-
mal conditions somewhere on the slopes, just below the
top. At first glance, one may be satisfied with a robustness
criterion function (CR3) that gives results comparable to
calculated optimal separation conditions. However, one
must ask, does it really do its primary job, or is it stringent
enough. The true answer to this question is the matter of
the analyst’s expertise. Again, additional considerations
of the analysis time and separation quality with respect

to least separated components need to be included in the
global multi-criteria decision-making process.

To make an example, we shall consider the choice
between the RBF — NRD and MLP — NRD combinations.
From Table 2 and Fig. 3 it can be seen that RBF retention
model in combination with the NRD separation criterion
function and CR3 robustness criterion function yields
separation within 25 minutes, while the MLP retention
model in combination with the NRD separation criterion
function yields separation within 17 minutes, which is not
accepted as the optimal one by using any of the robustness
criterion functions. The reason for this rejection can be
easily identified in the selected optimal gradient profile.
The optimal profile has a rather steep gradient (87 degrees),
which is well known to be poorly reproducible. On the
other hand, the RBF — NRD combination gives optimal
conditions that are marked as the robust ones by the
CR3 robustness criterion function. Here the gradient pro-
file is not too steep (65 degrees) and has therefore better
reproducibility. The analysis time is a bit longer (25 min-
utes), but what is important is that the separation between
the two least separated components is significantly higher
(bromide/nitrite retention time difference of 1.97 min).
Although we presented the drawbacks of the CR3 robust-
ness criterion function, in this example we accepted its
results due to benefits in better separation and rather short
analysis time. This may point to the application of the RBF
retention model in combination with the NRD separation
criterion function and CR3 robustness criterion function
as the optimal tool for multi-criteria decision-making opti-
mization process in this particular case. The principles of
the described approach can be used for other ion chroma-
tographic applications. In many cases this can be done in a
straightforward manner. However, additional customiza-
tion of retention models may be required for some samples.

CONCLUSION

This study described the application of multi-layer per-
ceptron and radial-basis function artificial neural networks
retention models in combination with different separation
and robustness criterion functions for multi-criteria deci-
sion-making optimization process in ion chromatography.
The developed retention models showed satisfactory
performance characteristics and therefore could be used
for optimization purposes. The normalized retention
difference product separation function proved to be most
sensitive to application of different gradient profiles while
the CR3 robustness criterion function provided results
for optimal robustness mostly in agreement with optimal
separation. The considerations of analysis time, the shape
of the calculated optimal gradient profiles, and separation
between two least separated components were used as
tools for the multi-criteria decision-making optimization
process.
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